H ( div ) and H ( curl ) - conforming VEM
نویسندگان
چکیده
In the present paper we construct Virtual Element Spaces that are H(div)-conforming and H(curl)-conforming on general polygonal and polyhedral elements; these spaces can be interpreted as a generalization of well known Finite Elements. We moreover present the basic tools needed to make use of these spaces in the approximation of partial differential equations. Finally, we discuss the construction of exact sequences of VEM spaces.
منابع مشابه
Canonical construction of finite elements
The mixed variational formulation of many elliptic boundary value problems involves vector valued function spaces, like, in three dimensions, H(curl; Ω) and H(Div;Ω). Thus finite element subspaces of these function spaces are indispensable for effective finite element discretization schemes. Given a simplicial triangulation of the computational domain Ω, among others, Raviart, Thomas and Nédéle...
متن کاملOptimal Error Estimation for H(curl)-Conforming p-Interpolation in Two Dimensions
In this paper we prove an optimal error estimate for the H(curl)-conforming projection based p-interpolation operator introduced in [L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions, SIAM J. Numer. Anal., 41 (2003), pp. 1195–1208]. This result is proved on the reference element (either triangle or square) K for regular vec...
متن کاملHigh Order Finite Element Methods for Electromagnetic Field Computation Dissertation
This thesis deals with the higher-order Finite Element Method (FEM) for computational electromagnetics. The hp-version of FEM combines local mesh refinement (h) and local increase of the polynomial order of the approximation space (p). A key tool in the design and the analysis of numerical methods for electromagnetic problems is the de Rham Complex relating the function spaces H1(Ω), H(curl,Ω),...
متن کاملOn the div-curl lemma in a Galerkin setting
Given a sequence of Galerkin spaces Xh of curl conforming vector fields, we state necessary and sufficient conditions under which it is true that the scalar product uh ·uh of two sequences of vector fields uh, uh ∈ Xh converging weakly in L, converges in the sense of distributions to the right limit, whenever uh is discrete divergence free and curluh is precompact in H−1. The conditions on Xh a...
متن کاملEFFICIENT ASSEMBLY OF H(div) AND H(curl) CONFORMING FINITE ELEMENTS
In this note, we discuss how to efficiently evaluate and assemble general finite element variational forms on H(div) and H(curl). The proposed strategy relies on a decomposition of the element tensor into a precomputable reference tensor and a mesh-dependent geometry tensor. Two key points must then be considered: the appropriate mapping of basis functions from a reference element, and the orie...
متن کامل